Aluminum Toxicity and Tolerance in Plants.
نویسندگان
چکیده
Aluminum (Al) is the most abundant metal in the earths crust, comprising about 7% of its mass. Since many plant species are sensitive to micromolar concentrations of Al, the potential for soils to be A1 toxic is considerable. Fortunately, most of the A1 is bound by ligands or occurs in other nonphytotoxic forms such as aluminosilicates and precipitates. However, solubilization of this A1 is enhanced by low pH and A1 toxicity is a major factor limiting plant production on acid soils. Soil acidification can develop naturally when basic cations are leached from soils, but it can be accelerated by some farming practices and by acid rain (Kennedy, 1986). Strategies to maintain production on these soils include the application of lime to raise the soil pH and the use of plants that are tolerant of acid soils. Although A1 toxicity has been identified as a problem of acid soils for over 70 years, our knowledge about the primary sites of toxicity and the chain of events that finally affects plant growth remains largely speculative. In this paper we review recent progress that has been made in our understanding of A1 toxicity and the mechanisms of A1 tolerance in plants.
منابع مشابه
Effects of aluminum toxicity on maize (Zea mays L.) seedlings. Parviz Malekzadeh1*, Reza Sheikhakbari Mehr1 and Ali Asghar Hatamnia2
Aluminum toxicity is one of the most deleterious factors for plant growth in acidic soils because over 50% of the world’s potentially arable lands are acidic. In recent years, considerable research has been conducted to understand the mechanisms of Al toxicity and tolerance in plants. This paper reviews the effects of different concentration of Al on plant shoot, root physiological parameters s...
متن کاملGenetic and molecular mechanisms of aluminum tolerance in plants.
Aluminum (Al) toxicity restricts root growth and agricultural yield in acid soils, which constitute approximately 40% of the potentially arable lands worldwide. The two main mechanisms of Al tolerance in plants are internal detoxification of Al and its exclusion from root cells. Genes encoding membrane transporters and accessory transcription factors, as well as cis-elements that enhance g...
متن کاملEffects of aluminum toxicity on maize (Zea mays L.) seedlings
Aluminum toxicity is one of the most deleterious factors for plant growth in acidic soils because over 50% of the world’s potentially arable lands are acidic. In recent years, considerable research has been conducted to understand the mechanisms of Al toxicity and tolerance in plants. This paper reviews the effects of different concentration of Al on plant shoot, root physiological parameters s...
متن کاملMorpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India
Aluminum (Al) is the third most abundant metal in earth crust, whose chemical form is mainly dependent on soil pH. The most toxic form of Al with respect to plants is Al3+, which exists in soil pH <5. Acidic soil significantly limits crop production mainly due to Al3+ toxicity worldwide, impacting approximately 50% of the world's arable land (in North-Eastern India 80% soil are acidic). Al3+ to...
متن کاملWheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils
Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short-term elevated [CO2] on growth of Al-tolerant (ET8) and Al-sensitive (ES8) wheat plants and ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 107 2 شماره
صفحات -
تاریخ انتشار 1995